An embedding of ChuCors in L-ChuCors

Ondrej Krídl1, Stanislav Krajči1 and Manuel Ojeda-Aciego2

1 Department of Computer Science, University of P. J. Šafárik in Košice, Slovakia
2 Department of Applied Mathematics, University of Málaga, Spain
emails: o.kridlo@gmail.com, stanislav.krajci@upjs.sk, aciego@uma.es

Abstract

An L-fuzzy generalization of the so-called Chu correspondences between formal contexts forms a category called L-ChuCors. In this work we show that this category naturally embeds ChuCors.

Key words: Formal Concept Analysis, Category theory, L-fuzzy logic

1 Preliminaries

Formal concept analysis (FCA) introduced by Ganter and Wille [6] has become an extremely useful theoretical and practical tool for formally describing structural and hierarchical properties of data with “object-attribute” character. Bělohlávek in [1, 2] provided an L-fuzzy extension of the main notions of FCA, such as context and concept, by extending its underlying interpretation on classical logic to the more general framework of L-fuzzy logic [7].

In this work, we aim at formally describing some structural properties of inter-contextual relationships [5, 11] of L-fuzzy formal contexts by using category theory [3], following the results in [12, 13]. The category L-ChuCors is formed by considering the class of L-fuzzy formal contexts as objects and the L-fuzzy Chu correspondences as arrows between objects.

The main result here is that L-ChuCors embeds the category ChuCors. This result is illustrated by showing different categories L-ChuCors built on different underlying truth-values sets L.

In order to make this contribution as self-contained as possible, we proceed now with the preliminary definitions of complete residuated lattice, L-fuzzy context, L-fuzzy concept and L-Chu correspondence.

Definition 1 An algebra $\langle L, \land, \lor, \otimes, \rightarrow, 0, 1 \rangle$ is said to be a complete residuated lattice if
Definition 2 Let \(L \) be a complete residuated lattice, an \(L \)-fuzzy context is a triple \(\langle B, A, r \rangle \) consisting of a set of objects \(B \), a set of attributes \(A \) and an \(L \)-fuzzy binary relation \(r \), i.e. a mapping \(r: B \times A \to L \), which can be alternatively understood as an \(L \)-fuzzy subset of \(B \times A \).

We now introduce the \(L \)-fuzzy extension provided by Bělohlávek [1], where we will use the notation \(Y^X \) to refer to the set of mappings from \(X \) to \(Y \).

Definition 3 Consider an \(L \)-fuzzy context \(\langle B, A, r \rangle \). A pair of mappings \(\uparrow: L^B \to L^A \) and \(\downarrow: L^A \to L^B \) can be defined for every \(f \in L^B \) and \(g \in L^A \) as follows:

\[
\uparrow f(a) = \bigwedge_{o \in B} (f(o) \to r(o, a)) \quad \downarrow g(o) = \bigwedge_{a \in A} (g(a) \to r(o, a))
\]

Lemma 1 Let \(L \) be a complete residuated lattice, let \(r \in L^{B \times A} \) be an \(L \)-fuzzy relation between \(B \) and \(A \). Then the pair of operators \(\uparrow \) and \(\downarrow \) form a Galois connection between \(\langle L^B; \subseteq \rangle \) and \(\langle L^A; \subseteq \rangle \), that is, \(\uparrow: L^B \to L^A \) and \(\downarrow: L^A \to L^B \) are anti-adjoint and, furthermore, for all \(f \in L^B \) and \(g \in L^A \) we have \(f \subseteq \downarrow \uparrow f \) and \(g \subseteq \uparrow \downarrow g \).

Definition 4 Consider an \(L \)-fuzzy context \(C = \langle B, A, r \rangle \). An \(L \)-fuzzy set of objects \(f \in L^B \) (resp. an \(L \)-fuzzy set of attributes \(g \in L^A \)) is said to be closed in \(C \) iff \(f = \uparrow \uparrow f \) (resp. \(g = \downarrow \downarrow g \)).

Lemma 2 Under the conditions of Lemma 1, the following equalities hold for arbitrary \(f \in L^B \) and \(g \in L^A \), \(\uparrow f = \uparrow \uparrow \uparrow f \) and \(\downarrow g = \downarrow \downarrow \downarrow g \), that is, both \(\uparrow \uparrow f \) and \(\downarrow \downarrow g \) are closed in \(C \).

Definition 5 An \(L \)-fuzzy concept is a pair \(\langle f, g \rangle \) such that \(\uparrow f = g \), \(\downarrow g = f \). The first component \(f \) is said to be the extent of the concept, whereas the second component \(g \) is the intent of the concept.

The set of all \(L \)-fuzzy concepts associated to a fuzzy context \(\langle B, A, r \rangle \) will be denoted as \(L\text{-FCL}(B, A, r) \).

An ordering between \(L \)-fuzzy concepts is defined as follows: \(\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle \) if and only if \(f_1 \subseteq f_2 \) if and only if \(g_1 \geq g_2 \).

Proposition 1 The poset \((L\text{-FCL}(B, A, r), \leq) \) is a complete lattice where

\[
\bigwedge_{j \in J} \langle f_j, g_j \rangle = \langle \bigwedge_{j \in J} f_j, \uparrow \bigwedge_{j \in J} (\bigwedge_{j \in J} f_j) \rangle
\]

\[
\bigvee_{j \in J} \langle f_j, g_j \rangle = \langle \downarrow (\bigwedge_{j \in J} g_j), \bigwedge_{j \in J} g_j \rangle
\]
Finally, we proceed with the definition of L-Chu correspondences, for which we need the notion of L-multifunction.

Definition 6 An L-**multifunction** from X to Y is a mapping $\varphi : X \to L^Y$. The set $L\text{-Mfn}(X,Y)$ of all the L-multifunctions from X to Y can be endowed with a poset structure by defining the ordering $\varphi_1 \leq \varphi_2$ as $\varphi_1(x)(y) \leq \varphi_2(x)(y)$ for all $x \in X$ and $y \in Y$.

Definition 7 Consider two L-fuzzy contexts $C_i = (B_i, A_i, r_i), (i = 1, 2)$, then the pair $\varphi = (\varphi_l, \varphi_r)$ is called a correspondence from C_1 to C_2 if φ_l and φ_r are L-multifunctions, respectively, from B_1 to B_2 and from A_2 to A_1 (that is, $\varphi_l : B_1 \to L^{B_2}$ and $\varphi_r : A_2 \to L^{A_1}$).

The L-correspondence φ is said to be a weak L-**Chu correspondence** if the equality $\hat{r}_1(\chi_{o_1}, \varphi_r(a_2)) = \hat{r}_2(\varphi_l(o_1), \chi_{a_2})$ holds for all $o_1 \in B_1$ and $a_2 \in A_2$. By unfolding the definition of \hat{r}_i this means that

$$\bigwedge_{a_1 \in A_1} (\varphi_r(a_2)(a_1) \to r_1(o_1, a_1)) = \bigwedge_{o_2 \in B_2} (\varphi_l(o_2)(a_2) \to r_2(o_2, a_2)) \quad (2)$$

A weak Chu correspondence φ is an L-**Chu correspondence** if $\varphi_l(o_1)$ is closed in C_2 and $\varphi_r(a_2)$ is closed in C_1 for all $o_1 \in B_1$ and $a_2 \in A_2$. We will denote the set of all Chu correspondences from C_1 to C_2 by $L\text{-ChuCors}(C_1, C_2)$.

In the following definition and lemma, we introduce some connections between the right and the left sides of L-Chu correspondences.

Definition 8 Given a mapping $\varpi : X \to L^Y$ we consider the following associated mappings $\varpi_* : L^X \to L^Y$ and $\varpi^* : L^Y \to L^X$, defined for all $f \in L^X$ and $g \in L^Y$ by

1. $\varpi_*(f)(y) = \bigvee_{x \in X} (f(x) \otimes \varpi(x)(y))$
2. $\varpi^*(g)(x) = \bigwedge_{y \in Y} \varpi(x)(y) \to g(y)$

Lemma 3 Let $C_i = (B_i, A_i, r_i)$ for $i = 1, 2$ be L-fuzzy contexts. Let $\varphi = (\varphi_l, \varphi_r) \in L\text{-ChuCors}(C_1, C_2)$. Then

- for all $f \in L^{B_1}$ and $g \in L^{A_2}$, the following equalities hold
 $$\uparrow_2 (\varphi_* (f)) = \varphi^* (\uparrow_1 (f)) \quad \text{and} \quad \downarrow_1 (\varphi_{r*} (g)) = \varphi^*_r (\downarrow_2 (g))$$

- for all $o_1 \in B_1$ and $a_2 \in A_2$, the following equalities hold
 $$\varphi_l(o_1) = \uparrow_2 (\varphi^*_r (\downarrow_1 (\chi_{o_1}))) \quad \text{and} \quad \varphi_r(a_2) = \downarrow_1 (\varphi^*_l (\uparrow_2 (\chi_{a_2})))$$
The category L-ChuCors

We introduce now the category of L-Chu correspondences between L-fuzzy formal contexts as follows:

- **objects** L-fuzzy formal contexts
- **arrows** L-Chu correspondences
- **composition** $\varphi_2 \circ \varphi_1 : C_1 \to C_3$ of arrows $\varphi_1 : C_1 \to C_2$, $\varphi_2 : C_2 \to C_3$ ($C_i = \langle B_i, A_i, r_i \rangle$, $i \in \{1, 2\}$)
 - $(\varphi_2 \circ \varphi_1)_l : B_1 \to L^{B_3}$ and $(\varphi_2 \circ \varphi_1)_r : A_3 \to L^{A_1}$
 - $(\varphi_2 \circ \varphi_1)(o_1) = \|3\|_3 (\varphi_2 \star (\varphi_1)(o_1)))$

 $$\varphi_2 \star (\varphi_1)(o_1))(o_3) = \bigvee_{o_2 \in B_2} \varphi_2(o_2) \otimes \varphi_1(o_2)(o_3)$$
 - $(\varphi_2 \circ \varphi_1)_r(a_3) = \|1\|_1 (\varphi_1 \star (\varphi_2)(a_3)))$

 $$\varphi_1 \star (\varphi_2)(a_3))(a_1) = \bigvee_{a_2 \in A_2} \varphi_1(a_2) \otimes \varphi_2(a_2)(a_1)$$

Theorem 1 L-fuzzy Chu correspondences between L-fuzzy formal contexts form a category with the composition defined above.

Proof: We just have to check the existence of identity arrows and the associativity of composition. The latter is just a matter of straightforward calculation, the identity arrows $\iota : C \to C$ are defined as follows for any given L-fuzzy context $C = \langle B, A, r \rangle$:

- $\iota_l(o) = \|\uparrow \| (\chi_o)$, for all $o \in B$
- $\iota_r(a) = \|\downarrow \| (\chi_a)$, for all $a \in A$.

3 L-ChuCors embeds ChuCors

In the following paragraph, we sketchily argue that ChuCors can be embedded in any of the extensions L-ChuCors where L is a complete residuated lattice.

Assume that $(L_1, \land, \lor, \otimes, \rightarrow, 0, 1)$ and $(L_2, \land, \lor, \otimes, \rightarrow, 0, 1)$ are two complete residuated lattices, such that L_2 is a sublattice of L_1. Any L_2-fuzzy formal context (B, A, r) satisfies that $r \in L_2^{B \times A} \subseteq L_1^{B \times A}$. This inclusion implies that the class of all objects of L_2-ChuCors is a subclass of L_1-ChuCors. Moreover, every concept constructed in (B, A, r) by using the underlying logic provided by L_2 can be seen as well as a concept under the logic of L_1. As a result, the concept lattice L_2-$FCL(B, A, r)$ is a sublattice of the concept lattice L_1-$FCL(B, A, r)$.

The following example illustrates the previous results on the light of two particular cases for L_1.

Example 1 Consider L_1 and L_2 the lattices shown to the left of the picture below, together with the two L_2-fuzzy formal contexts shown in the right.
Consider two complete residuated lattice(s) to be consisting of the infimum on L_i, together with its residual implication defined as $k \rightarrow l = \bigvee \{m \in L_i \mid m \land k \leq l\}$, for all $k,l,m \in L_i$ where $i \in \{1,2\}$. The concept lattices on the underlying logic of L_1 are shown in the pictures below, where the concepts in bold line are those in the frame associated to L_2.

The common L_2 and L_1-Chu correspondences are shown below:

$\varphi_l^{1,c,c} \varphi_r^{a,c,1} \varphi_l^{1,c} \varphi_r^{a,c} \varphi_l^{1,c} \varphi_r^{a,c}$

The following result formally states the general relation between L_i-ChuCors.

Lemma 4 Let C_1, C_2 be the L_2-contexts. L_2-ChuCors(C_1, C_2) \subseteq L_1-ChuCors(C_1, C_2).

It is easy to see that the connection of two L_2-Chu correspondences make a new L_2-Chu correspondence. In addition, the set of L_2-Chu correspondences between two L_2-contexts is a subset of all L_1-Chu correspondences between the same contexts. L_2-Chu correspondences form a category, so the set of arrows is closed under the connections of arrows, as a result the set of L_1-Chu correspondences is closed under connections of L_2-Chu correspondences. Thus, we have just proved the following.

Lemma 5 Let C_i for $i \in \{1,2,3\}$ be two L_2-contexts. For every L_2-Chu correspondence $\varphi \in L_2$-ChuCors(C_1, C_2) and $\psi \in L_2$-ChuCors(C_2, C_3) holds $\psi \circ \varphi \in L_1$-ChuCors($C_1, C_3$).

In consequence, we can state
Theorem 2 Under the environment hypotheses of this section, the category L_2-ChuCors naturally embeds in L_1-ChuCors.

As the category ChuCors of classical Chu correspondences are defined on classical, two-valued logic, which is a special case of any logic defined on complete residuated lattice, we obtain

Corollary 1 The category ChuCors naturally embeds in L-ChuCors

References

